Search results for "Birational geometry"

showing 4 items of 4 documents

Automorphisms of $mathbb{A}^{1}$-fibered affine surfaces

2011

We develop technics of birational geometry to study automorphisms of affine surfaces admitting many distinct rational fibrations, with a particular focus on the interactions between automorphisms and these fibrations. In particular, we associate to each surface S of this type a graph encoding equivalence classes of rational fibrations from which it is possible to decide for instance if the automorphism group of S is generated by automorphisms preserving these fibrations.

Surface (mathematics)Graph encodingPure mathematicsApplied MathematicsGeneral MathematicsFibered knotBirational geometryType (model theory)AutomorphismMathematics::Algebraic TopologyMathematics::Group TheoryMathematics::Algebraic GeometryAffine transformationddc:510Focus (optics)Mathematics::Symplectic GeometryMathematics
researchProduct

Cluster tilting for one-dimensional hypersurface singularities

2008

In this article we study Cohen-Macaulay modules over one-dimensional hypersurface singularities and the relationship with the representation theory of associative algebras using methods of cluster tilting theory. We give a criterion for existence of cluster tilting objects and their complete description by homological methods, using higher almost split sequences and results from birational geometry. We obtain a large class of 2-CY tilted algebras which are finite dimensional symmetric and satisfy $\tau^2=\id$. In particular, we compute 2-CY tilted algebras for simple and minimally elliptic curve singularities.

Pure mathematicsMathematics(all)General MathematicsMathematical analysisTilting theoryBirational geometryRepresentation theoryMathematics - Algebraic GeometryElliptic curveHypersurfaceSimple (abstract algebra)FOS: MathematicsGravitational singularityRepresentation Theory (math.RT)Algebraic Geometry (math.AG)Mathematics - Representation TheoryAssociative propertyMathematicsAdvances in Mathematics
researchProduct

Actions de tores algébriques sur des corps de caractéristique zéro

2023

Over an algebraically closed field of characteristic zero, normal affine varieties endowed with an effective torus action were described by Altmann and Hausen in 2006 by a geometrico-combinatorial presentation.Using Galois descent tools, we extend this presentation to the case where the ground field is an arbitrary field of characteristic zero. In this context, the acting torus may be non split and may have non-trivial torsors, thus we need additional data to encode such varieties. We provide some situations where the generalized Altmann-Hausen presentation simplifies. For instance, if the acting torus is split, we recover mutatis mutandis the original Altmann-Hausen presentation. Finally, …

Convex geometryAction of algebraic torusActions de tores algébriquesStructures et formes réellesGéométrie birationnelle[MATH.MATH-GM] Mathematics [math]/General Mathematics [math.GM]Birational geometryGéométrie convexeReal structures and real forms
researchProduct

On the birational geometry of the universal Picard variety

2010

We compute the Kodaira dimension of the universal Picard variety P_{d,g} parameterizing line bundles of degree d on curves of genus g under the assumption that (d-g+1,2g-2)=1. We also give partial results for arbitrary degrees d and we investigate for which degrees the universal Picard varieties are birational.

Pure mathematics14H10Degree (graph theory)General MathematicsBirational geometryMathematics - Algebraic GeometryMathematics::Algebraic GeometryGenus (mathematics)Line (geometry)FOS: MathematicsKodaira dimensionpicard variety birational geometrySettore MAT/03 - GeometriaVariety (universal algebra)Algebraic Geometry (math.AG)Mathematics
researchProduct